STABILITY OF CONVECTIVE MOTION IN A
TWO-DIMENSIONAL VERTICAL FLUID LAYER
WITH PERMEABLE BOUNDARIES

V. M. Shikhov UDC 536.25

The stability of the convective motion of a viscous incompressible fluid in a channel between per-
meable vertical planes heated to different temperatures is considered under the assumption of
homogeneous transverse air blasting. Stability boundaries for different values of the Prandtl num-
ber Pr and Peclet number Pe that characterize the intensity of transverse motion are numerically
determined, The results demonstrate that transverse blasting substantially influences both the
hydrodynamic instability mechanism and instability due to the growth of thermal waves in the flow.

The stability of steady convective motion between vertical parallel planes heated to different temperatures
has been investigated in detail [1-7]. The existence of monotonic-type instability of a hydrodynamical nature
and oscillatory type due to the growth of thermal waves in the flow was demonstrated. It was assumed that the
channel walls were impermeable to the substance and that neither suction nor draining of the fluid from the
boundaries occurred, though injection and drawing off of fluid through permeable boundaries can exert a sub~
stantial influence on the stability of the resulting steady motion and may serve as one method of controlling
hydrodynamical and convective instability. It is well known that transverse motion leads to a significant in-
crease in the stability of a laminar boundary layer [8, 9] and of plane Poiseuille flow {10, 11]. It was proved
[12] that transverse draining increases the critical Rayleigh number that determines the appearance of con~
vection in a horizontal layer heated from below,

§1. Letusconsider aplanevertical layer of a viscous incompressible fluid bounded by the infinite planes
x =+h, heated to the different temperatures =6, Suppose one~dimensional injection of a fluid at the rate v,
occurs on the surface x=-—handthat one-dimensional draining occurs on the surface x=h at the same rate,
Thus, the resulting steady motion is the superposition of a one-dimensional transverse flow on plane-parallel
convective flow,

V=0, vy=0; v;=uyz),
where vy =const,

The steady convection equations have the form

Pe - ” ap,
PTuo—ug—Tos—-a—;=C, (1.1)

PeT; — T, (Pe =ul l),
Y x

where uy, Ty, and p, are vertical veloeity, absolute temperature, and pressure, respectively; P, is the Peclet
number that characterizes the intensity of transverse motion, Pr is the Prandtl number, v is the kinematic
viscosity coefficient, ¥ is the thermal-diffusivity coefficient, and ¢ is the separation constant of the variables.
We introduce h, h%/v, 6, gBh?/v, andp gB6h, where g is the acceleration of gravity, p is density, and 8 is the
thermal-expansion coefficient, as the units of distance, time, temperature, velocity, and pressure.

A temperature is specified on the channel boundaries and the vertical component of velocity vanishes,
To(—1)=—1, To(1)=1, ug(==1)=0. (1.2)
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We add one further condition to the above. That is, fluid flow rate through a transverse channel cross
section is zero,

+1
§ uy@)dz =0, (1.3)

~1

From Egs. (1.1), taking into account Egs. (1.2) and (1.3), we find that the temperature distribution
and distribution of the vertical velocity component of the resulting motion are given by

T, (z) = b (6= — chPe); (1.4)

Pe
Uy (2) = €y (ePe* — zshPe — chPe) | ¢, (ePr - xsh%— —ch S—‘f), where

¢ = Pr X
0 "Per(l1 —Pr)shPe °*
¢y (chPe — f"leq shPe )
¢ = —

ch Ei — P_I Sh P_e_

Pr Pe Pr
In passing to limits we obtain from Egs. (1.4) a linear temperature distribution Ty=x and cubic ve-
" locity profileuy = (x/6)/(1 ~x?), which holds for a layer with impermeable boundaries in the absence of trans-
verse fluid flow (Pe=0). The presence of a transverse velocity component (Pe# 0} leads to distor-
tion of the P, profile, which ceases being a linear function of the transverse coordinate. A thermal
boundary layer forms near one of the boundaries at high Pe. Transverse motion leads also to dis-
tortion of the stationary distribution of the vertical velocity component. Two mechanisms that de-
form u, exist here:

a) a convective mechanism associated with the distortion of the stationary temperature distribution;
b) a hydrodynamical mechanism associated with the interaction of the transverse flow with the con-
vective plane-parallel flow and described by the nonlinear terms of the Navier—=Stokes equation,

Figure 1 depicts stationary temperature (T and velocity (uy distributions for Pr=2 and Pe =3,
Values of T, and u, in the case of impermeable boundaries are indicated by a prime for comparison. Trans-
verse motion leads to a decrease in flow rate and to asymmetry of the profile of the vertical velocity com-
ponent,

§ 2. We will write equations for small disturbances of the stationary temperature and velocity distribu-
tions in order to study the stability of the resulting nonparallel fluid motion. An analysis demonstrates
that (as in the case of flow) a crisis in the flow between impermeable boundaries [13] is associated with the
development of two-dimensional disturbances, whose description requires that we introduce the stream
function ¥ (x, z, t), connected to the velocity components by the equations

o

@
vx=%; vy=0; v, = T

The system of equations for disturbances in the stream and temperature functions has the form

] Pe @ a 8 oT
-aTAxp-i—i,-]f——Axp-{—Gr(uo;;Axp—uo%) :Amp_a_x_;

dx
2.1)
8T | Pe oT G( T T'a‘p)—lAT (
@ Trr e 0T M 5 Ty = AL
where
Gr = "%.ghs is the Grashof number; A= 6%25 + -g—;
We introduce disturbances of the form
'[p(x, z, t) = (p(x)e—M+'ikz; (2-2)

I(z, z, t) =1(z)e—rt+ikz,

where ¢ (x) and T (x) are disturbance amplitudes, k is a real wave number, and A =Ap +A4 i?‘, the'complex
disturbance decrement. The stability boundary is determined by the condition Ar=0; the imaginary part
A; of the decrement determines the phase velocity of the disturbance.
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We substitute Eq. (2.2) in (2.1), obtaining a system of equations for the disturbance amplitudes,
ik Gr [ug (97 — K2@) — uop] — A (¢” — k¢) = (1V — 2K%¢" + hig) — I-;—"; (9" — K¢y — 3 (2.3)
ik GrPr (ugt + To@) — APrt = (v — k2t) — Pev’.

Conditions under which the temperature and velocity disturbances on the wall vanish lead to the homogene~
ous boundary conditions

T ) =q(=1) =¢'(1)=0. 2.4)

Numerical integration was used to solve the characteristic spectral problem (2,3}, (2.4). The sys-
tem of equations (2.3) for the complex amplitudes ¢ and 7 reduces to a system of 12 real first~order dif-
ferential equations for the real and imaginary parts of the functions ¢, @', ¢", ¢™, and 7'. Three linearly
independent partial solutions of this system were constructed using the Runge ~Kutta—Merson method,
these solutions satisfying the conditions (2.4) at the point x=—1; "0-1"-type conditions for the higher de-
rivatives were also constructed. An orthogonalization procedure [14] was used to retain the linear inde~
pendence of the solutions over the entire range of integration. The boundary conditions at the right end
x=1 of the range of integration lead to characteristic equations that determine the real and imaginary parts
of the decrement A.

§3. Inorder topresentthe results of the calculation we will enumerate the basic results of the study
of the stability of convective flow between impermeable boundaries.

Convective flow in a vertical layer with impermeable boundaries reveals two types of instability as
a function of the value of Pr. When Pr <12, the flow and heat transfer crisis is hydrodynamical and as-
sociated with the instability of the interface between opposing convective flows, This crisis is due to an
increase in the so-called "standing" disturbances, which lead to the formation of a vertically periodic
chain of immobile eddies at the boundary of the flows. When Pr >12, instability is due to *travelling® dis-
turbances in the form of thermal waves increasing in the flow. The phase velocily of these waves is com~
mensurate with the velocity of the main flow, while there exist two waves propagating in the ascending and
descending flows, respectively. These waves have phase velocities identical in magnitude and lead fo the
appearance of instability at identical Grashof numbers.,

Such features involved in the appearance of instability are basically due to the asymmetry of the ve~
locity andtemperature profiles of the main fluid motion in the layer between impermeable boundaries.
Standing disturbances with vanishing phase velocity are impossible as in the case of convective fiow of a
fluid with temperature-dependent viscosity. The hydrodynamical mechanism of the instability of the inter-
face between opposing flows is now associated with disturbances that slowly drift along a vertical line up-
wards in the direction of the motion of more intensive flow. Calculations have demonstrated that their
phase velocity is near in magnitude to the velocity u=uy~u,, where v, = u:’n ax and u, = u:nax are the max-
imal velocities in the ascending and descending flows.

Figure 2 depicts the dependence of the critical (minimal along a neutral curve) value of the Grashof
number Gry for hydrodynamic-type disturbances and the corresponding dimensionless phase velocity
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Cx =>»i*/ k. Gr , on the parameter Pe for the three values of the Prandtl numbers 0.5, 2, and 10, Transverse
motion exerted the strongest stabilizing effect on the development of disturbances, The critical Grashof
number for Pr=0.5 was roughly three times greater than for flow with a cubic velocity profile in the case
of a comparatively low transverse speed (Pr=2), When Pe > 2,5, GTx increases in proportion to Pe? for

all these values of the Prandtl number, The velocity of the critical disturbances increases with increasing
Pe and reaches a maximal value for some Peclet number, A further growth in the transverse speed leads
to a decrease in c4. The dependence of velocity u on Pe for Pr=2 is depicted in Fig. 2 by a broken line.
The behavior of u(Pe) is analogous to that of c4 (Pe), while u is always greater in magnitude than cx, but

the difference between u and ¢4 decreases with decreasing Prandtl number,

The calculations demonstrated that the critical wave number ks« determining the wavelength of the
most dangerous disturbances remains practically invariant throughout the hydrodynamical branch of the
instability. A variation in the Pe and Pr parameters resulted in k«~1.4 in this range. Let us consider
instability induced by a growth of thermal waves. The basic difference from the case of impermeable
boundaries [4] is that no "combining" of the real levels with the generation of a pair of oscillating distur-
bances occurs in the decrement spectrum of A(Gr). Asymmetry of the T, and u, profiles in the case of
the homogeneous transverse velocity results in the fact that thermal waves propagating upwards and down-
wards cease being equal, have phase velocities differing in magnitude, and different instability boundaries
correspond to them, The influence of homogeneous transverse motion on the stability boundary and the
characteristics of the critical disturbances are shown in Fig. 3, where dependences are given for the critical
Grashof numbers Gr, phase velocities cx, and wave numbers ki for thermal waves propagating in the posi-
tive direction of the z axis (solid curves). The dependence of Gr, {Pe) for thermal waves with negative
phase velocity is depicted by broken curves., The dependences Gry (Pe) for "positive" waves have a mini-
mum at approximately Pe =1,6 for Pr=15 and 30 and when Pe =1.,9, for Pr=8, Thus, flow becomes less
stable at low transverse velocities than in the case of impermeable boundaries for thermal waves with
positive phase velocity. Flow stability increases with strong fluid suctions and drains on the boundaries
and Grs increases in proportion to Pe? when Pe > 5.5.

An increase in stability for all values of Pe is observed and the disturbances are "deflated" from the
descending flow in the case of thermal waves with negative phase velocity.

The curves for cx (Pe) demonstrate that the phase velocity of the critical disturbances somewhat in-
creases with increasing transverse velocity. The critical phase velocity sharply increases in the range
of values of Peclet numbers in which the destabilizing influence of the draining is replaced by a stabilizing
influence. It becomes near in magnitude to the maximal velocity of the ascending flow. An increase in the
critical wave number k, with increasing Pe is observed for thermal waves with critical phase velocity in
contrast to the hydrodynamical instability mode for thermal waves with positive phase velocity. That is,
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the wavelength of disturbances defining a crisis of the given flow decreases with increasing trans-
verse velocity.

Results of the calculation demonstrated that weak transverse draining significantly decreases the
limiting Pr, at which such instability in the form of increasing thermal waves, appears., While Prx =11.4
[4] in the case of impermeable boundaries (Pe =0), we obtain Pry =5 for Pe =1 (we are bearing in mind
a wave with positive phase velocity), As before, there exist two different neutral curves, one of which
determines the instability region relative to hydrodynamical disturbances, and the other, relativetothermal
waves for all Pr> 5,

Strong transverse draining leads to qualitatively new results in the region of low and medium values
of the Prandtl number, Figure 4 depicts neutral curves on the k and Gr planes and phase velocities along
neutral curves for several values of the Prandtl number. The Peclet number was assumed fixed and equal
to 3. A new instability mode is obtained as a result of the continuous deformation of the single neufral
curve as the Prandt] number increases, as in the case of convective flow induced by internal heat sources
[16]. When Pr=1.1, Gr(k) consists of two neutral curves that continuously pass into each other. The curve
has two minima and we may correspondingly speak of two types of instability, A further increase in Pr
leads to a division of the instability region and the formation of different neutral curves, one of which (short~
wave) determines the instability region of hydrodynamical disturbances, while the other {long-wave) deter-
mines the "positive™ thermal waves, associated with the most dangerous disturbance corresponding to an
absolute minimum on the neutral curves,

Let us now present a summary of data on the stability boundary in the case of one~dimensional trans~
verse draining, The dependence of Gr, on the Prandtl number is depicted in Fig, 5 for given values of the
Peclet number, The broken curves correspond to stability boundaries relative to hydrodynamical distur~-
bances and thermal waves in the case of impermeable boundaries, Fluid draining and suction on the bound-
aries lead to flow destabilization relative to thermal waves for Pe =1.3. On the other hand, flow stability
relative to thermodynamical disturbances increases. A strong increase in stability on the hydrodynamical
branch in the region of low Prandtl numbers is due to our selection of the characteristic parameters (Pe =
const). The ratio Pe/Pr=Re (the Reynolds number is determined in terms of the transverse velocity) is
high at low Pr. As has been previously proved [16], an increase in Re, even in the hydrodynamical formula~
tion, leads to flow stabilization. The broken part of the curve for Pe =3 refers to the short-wave minimum
on the single neutral curve (cf, Fig, 5).

In conclusion, I wish to express my appreciation to E, M. Zhukhovitskii for supervising the study,
and G. Z. Gershuni for useful discussion of the results,
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